Discharge patterns of hypoglossal motoneurons during fictive breathing, coughing, and swallowing.
نویسندگان
چکیده
We performed a series of experiments to study the intracellular activity of 58 hypoglossal motoneurons (HMs) in decerebrate, paralyzed, and ventilated cats. Changes in membrane potentials (MP) and discharge activities were evaluated during fictive breathing (FB), swallowing (FS), and coughing (FC). FS and FC were elicited by electrical stimulation of the superior laryngeal nerves. FB, FS, and FC all exhibited characteristic discharge patterns of the phrenic, abdominal, pharyngeal branch of the vagus, and hypoglossal nerves. Thirty-nine HMs displayed respiratory modulation, and 19 were nonrespiratory modulated. Nine HMs did not exhibit MP changes during FB, FS, and FC. During FS, 49 HMs exhibited MP changes consisting of depolarization, hyperpolarization or hyperpolarization-depolarization. HMs involved in FS were either respiratory modulated (n = 38) or not (n = 11). Only 20 HMs displayed MP changes and/or discharge activity during FC. All but two HMs fired during the expiratory phase of FC or at the end of this reflex. All HMs involved in FC (n = 20) were also modulated during both FB and FS. Our results suggest that the XII nucleus is functionally divided into common and distinct subsets of HMs based on their spontaneous activities and responses observed during FS and FC. The changes in MP and discharge frequencies observed during the three behaviors also suggest that HMs are driven by specific premotor neurons during FS, whereas a common premotor pathway is involved during FB and FC.
منابع مشابه
Multifunctional laryngeal premotor neurons: their activities during breathing, coughing, sneezing, and swallowing.
To examine whether motor commands of two or more distinct laryngeal motor patterns converge onto a common premotor network, we conducted dual recordings from the laryngeal adductor motoneuron and its premotor neuron within the brainstem respiratory circuitry during fictive breathing, coughing, sneezing, and swallowing in decerebrate paralyzed cats. Expiratory neurons with an augmenting firing p...
متن کاملBehaviors of hypoglossal hyoid motoneurons in laryngeal and vestibular reflexes and in deglutition and emesis.
Reflex responses of hypoglossal motoneurons innervating the geniohyoid (GH) and thyrohyoid (TH) muscles from the superior laryngeal (SLN) and vestibular nerves and their behaviors during fictive swallowing and vomiting were examined by recording both the extracellular activities of 11 single cells in the hypoglossal nucleus and GH and TH muscle nerve activity in eight decerebrate, paralyzed, an...
متن کاملModulation of the inspiratory-related activity of hypoglossal premotor neurons during ingestion and rejection in the decerebrate cat.
Single-unit activities of the bulbar reticular inspiratory neurons directly projecting to hypoglossal motoneurons were studied during fictive ingestion (e.g., swallowing) and rejection elicited by repetitive stimulation of the superior laryngeal nerve and by application of water to the pharynx in immobilized decerebrated cats. The single-unit activity was recorded during 113 episodes of fictive...
متن کاملRole of the retrotrapezoid nucleus/parafacial respiratory group in coughing and swallowing in guinea pigs.
The retrotrapezoid/parafacial respiratory group (RTN/pFRG) located ventral to the facial nucleus plays a key role in regulating breathing, especially enhanced expiratory activity during hypercapnic conditions. To clarify the roles of the RTN/pFRG region in evoking coughing, during which reflexive enhanced expiration is produced, and in swallowing, during which the expiratory activity is consist...
متن کاملMultifunctional laryngeal motoneurons: an intracellular study in the cat.
We studied the patterns of membrane potential changes in laryngeal motoneurons (LMs) during vocalization, coughing, swallowing, sneezing, and the aspiration reflex in decerebrate paralyzed cats. LMs, identified by antidromic activation from the recurrent laryngeal nerve, were expiratory (ELMs) or inspiratory (ILMs) cells that depolarized during their respective phases in eupnea. During vocaliza...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 87 4 شماره
صفحات -
تاریخ انتشار 2002